竞赛选题 卷积神经网络手写字符识别 - 深度学习

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 卷积神经网络手写字符识别 - 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于毕业设计。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。



    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    @author: 丹成学长 Q746876041
    """
    
    #import modules
    import numpy as np
    import matplotlib.pyplot as plt
    #from sklearn.metrics import confusion_matrix
    import tensorflow as tf
    import time
    from datetime import timedelta
    import math
    from tensorflow.examples.tutorials.mnist import input_data


    def new_weights(shape):
      return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
    def new_biases(length):
      return tf.Variable(tf.constant(0.1,shape=length))
    def conv2d(x,W):
      return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    def max_pool_2x2(inputx):
      return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    #import data
    data = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2
    
    print("Size of:")
    print("--Training-set:\t\t{}".format(len(data.train.labels)))
    print("--Testing-set:\t\t{}".format(len(data.test.labels)))
    print("--Validation-set:\t\t{}".format(len(data.validation.labels)))
    data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000values
    
    x = tf.placeholder("float",shape=[None,784],name='x')
    x_image = tf.reshape(x,[-1,28,28,1])
    
    y_true = tf.placeholder("float",shape=[None,10],name='y_true')
    y_true_cls = tf.argmax(y_true,dimension=1)
    # Conv 1
    layer_conv1 = {"weights":new_weights([5,5,1,32]),
            "biases":new_biases([32])}
    h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])
    h_pool1 = max_pool_2x2(h_conv1)
    # Conv 2
    layer_conv2 = {"weights":new_weights([5,5,32,64]),
            "biases":new_biases([64])}
    h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])
    h_pool2 = max_pool_2x2(h_conv2)
    # Full-connected layer 1
    fc1_layer = {"weights":new_weights([7*7*64,1024]),
          "biases":new_biases([1024])}
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])
    # Droupout Layer
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    # Full-connected layer 2
    fc2_layer = {"weights":new_weights([1024,10]),
           "biases":new_weights([10])}
    # Predicted class
    y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]
    y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'
    # cost function to be optimized
    cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
    # Performance Measures
    correct_prediction = tf.equal(y_pred_cls,y_true_cls)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    with tf.Session() as sess:
      init = tf.global_variables_initializer()
      sess.run(init)
      train_batch_size = 50
      def optimize(num_iterations):
        total_iterations=0
        start_time = time.time()
        for i in range(total_iterations,total_iterations+num_iterations):
          x_batch,y_true_batch = data.train.next_batch(train_batch_size)
          feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
          feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
          sess.run(optimizer,feed_dict=feed_dict_train_op)
          # Print status every 100 iterations.
          if i%100==0:
            # Calculate the accuracy on the training-set.
            acc = sess.run(accuracy,feed_dict=feed_dict_train)
            # Message for printing.
            msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"
            # Print it.
            print(msg.format(i+1,acc))
        # Update the total number of iterations performed
        total_iterations += num_iterations
        # Ending time
        end_time = time.time()
        # Difference between start and end_times.
        time_dif = end_time-start_time
        # Print the time-usage
        print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))
      test_batch_size = 256
      def print_test_accuracy():
        # Number of images in the test-set.
        num_test = len(data.test.images)
        cls_pred = np.zeros(shape=num_test,dtype=np.int)
        i = 0
        while i < num_test:
          # The ending index for the next batch is denoted j.
          j = min(i+test_batch_size,num_test)
          # Get the images from the test-set between index i and j
          images = data.test.images[i:j, :]
          # Get the associated labels
          labels = data.test.labels[i:j, :]
          # Create a feed-dict with these images and labels.
          feed_dict={x:images,y_true:labels,keep_prob:1.0}
          # Calculate the predicted class using Tensorflow.
          cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
          # Set the start-index for the next batch to the
          # end-index of the current batch
          i = j
        cls_true = data.test.cls
        correct = (cls_true==cls_pred)
        correct_sum = correct.sum()
        acc = float(correct_sum) / num_test
        # Print the accuracy
        msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
        print(msg.format(acc,correct_sum,num_test))
      # Performance after 10000 optimization iterations
      optimize(num_iterations=10000)
      print_test_accuracy()
      savew_hl1 = layer_conv1["weights"].eval()
      saveb_hl1 = layer_conv1["biases"].eval()
      savew_hl2 = layer_conv2["weights"].eval()
      saveb_hl2 = layer_conv2["biases"].eval()
      savew_fc1 = fc1_layer["weights"].eval()
      saveb_fc1 = fc1_layer["biases"].eval()
      savew_op = fc2_layer["weights"].eval()
      saveb_op = fc2_layer["biases"].eval()
    
      np.save("savew_hl1.npy", savew_hl1)
      np.save("saveb_hl1.npy", saveb_hl1)
      np.save("savew_hl2.npy", savew_hl2)
      np.save("saveb_hl2.npy", saveb_hl2)
      np.save("savew_hl3.npy", savew_fc1)
      np.save("saveb_hl3.npy", saveb_fc1)
      np.save("savew_op.npy", savew_op)
      np.save("saveb_op.npy", saveb_op)



运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/776915.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何实现一套键盘鼠标控制两台计算机(Mouse Without Borders快速上手教程)

需求背景 当我们需要同时使用一台主机和一台笔记本的时候&#xff0c;如果使用两套键盘和鼠标分别操作各自的系统&#xff0c;非常地不便捷且非常占据桌面空间。那么如何使用一套键盘鼠标控制两台电脑呢&#xff1f; 需求实现 软件说明 我们可以使用微软官方的一款软件Mous…

nodejs 获取客服端ip,以及获取ip一直都是127.0.0.1的问题

一、问题描述 在做登录日志的时候想要获取客户端的ip, 网上查了一下 通过 req.headers[x-forwarded-for] || req.connection.remoteAddress; 获取&#xff0c; 结果获取了之后不管是开发环境&#xff0c;还是生产环境获取到的一直都是 127.0.0.1&#xff0c;这是因为在配置N…

代码随想录算法训练营第22天|LeetCode 77. 组合、216.组合总和III、17.电话号码的字母组合

1. LeetCode 77. 组合 题目链接&#xff1a;https://leetcode.cn/problems/combinations/description/ 文章链接&#xff1a;https://programmercarl.com/0077.组合.html 视频链接&#xff1a;https://www.bilibili.com/video/BV1ti4y1L7cv 思路&#xff1a;利用递归回溯的方式…

开启视频创作新篇章!腾讯发布MimicMotion:单张图像+简单姿势,瞬间“活”化视频。

腾讯和上交发布了一个根据图片生成跳舞视频的项目MimicMotion。效果同时支持面部特征和唇形同步&#xff0c;不止可以搞跳舞视频&#xff0c;也可以做数字人。 MimicMotion方案优化的内容有&#xff1a; 引入基于置信度的姿态引导机制。确保生成的视频在时间上更加连贯流畅。 …

计算机图形学入门25:BRDF的测量

1.前言 BRDF(双向反射分布函数)可以用各种各样的材质去描述&#xff0c;但是这只是一种基于物理的描述或者近似&#xff0c;那什么是真正的BRDF&#xff1f;只有测出来的才是真正的。 为什么要测出BRDF&#xff1f;因为之前所描述的BRDF并不准确。如下图所示&#xff0c;以菲涅…

C++——模板详解(下篇)

一、非类型模板参数 模板参数分为类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之后的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类&#xff08;函数&#xff09;模板的一个参数&#xff0c;在类&#…

LabVIEW与OpenCV图像处理对比

LabVIEW和OpenCV在图像处理方面各有特点。LabVIEW擅长图形化编程、实时处理和硬件集成&#xff0c;而OpenCV则提供丰富的算法和多语言支持。通过DLL、Python节点等方式&#xff0c;OpenCV的功能可在LabVIEW中实现。本文将结合具体案例详细分析两者的特点及实现方法。 LabVIEW与…

解决Docker Desktop启动异常 Docker Desktop- WSL distro terminated abruptly

异常 当打开Docker Desktop时候&#xff0c;启动docker引擎时&#xff0c;提示 加粗样式文本信息 Docker Desktop - WSL distro terminated abruptly A WSL distro Docker Desktop relies on has exited unexpectedly. This usually happensas a result of an external entit…

二叉树中的前序、中序、后续遍历(C语言)

目录 前序遍历概念代码递归分解图 中序遍历概念代码 后序遍历概念代码 前序遍历 概念 概念&#xff1a; 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。 简单点来说就是&#xff1a;根 左子树 右子树的访问顺序 例如&#xff1a;…

2、图形验证码

1、图形验证码设计 1.1思路 现今&#xff0c;市面上的图形验证码付费的&#xff0c;免费的多种多样&#xff0c;主要形式有滑动拼图、文字点选、语序点选、字体识别、空间推理、智能随机等。 而处理也分为web端和sever端两部分 此处以免费的kaptcha 为例&#xff0c;进行数字图…

Vatee万腾平台:智能生活的新选择

在科技飞速发展的今天&#xff0c;智能生活已经不再是遥不可及的梦想&#xff0c;而是逐渐渗透到我们日常生活的方方面面。Vatee万腾平台&#xff0c;作为智能科技领域的佼佼者&#xff0c;正以其创新的技术、丰富的应用场景和卓越的用户体验&#xff0c;成为智能生活的新选择&…

免费的K歌软件

提到K歌软件&#xff0c;目前市场上的选择似乎并不多&#xff0c;全民的会员制非常恶心&#xff01;除此之外&#xff0c;IKTV和想唱还不错是其中的热门选择&#xff0c;不过它们的更新频率有点让人有些疲倦。不过最近一款TV K歌软件非常火爆&#xff0c;而且他的曲库更新也是非…

输入框输入值之后,检索表格中是否存在输入框中的值,存在就让当前文字为红色

this.searchValue为输入框的值 createKeywordHtml_content(data) { if (data undefined) { return data; } if (typeof data ! string) { data String(data) } let value data.replace(this.searchValue, <span style"color:#FF5555">$&</span>…

LivePortrait:一张照片生成生动视频,精准操控眼睛和嘴唇动作 本地一键整合包下载

LivePortrait&#xff0c;这个名字听起来就像是魔法&#xff0c;但它其实是现实世界中的黑科技。想象一下&#xff0c;你那尘封已久的相册里&#xff0c;那些定格在时间里的笑脸&#xff0c;突然间动了起来&#xff0c;眨眼、微笑、甚至说话&#xff0c;这不再是电影里的场景&a…

2024 WAIC|第四范式胡时伟分享通往AGI之路:行业大模型汇聚成海

7月4日&#xff0c;2024世界人工智能大会&#xff08;WAIC&#xff09;正式开幕。此次大会围绕核心技术、智能终端、应用赋能等板块展开&#xff0c;展览规模、参展企业数均达历史最高。第四范式受邀参展&#xff0c;集中展示公司十年来在行业大模型产业应用方面的实践。在当天…

不要再盲目入场啦!跨境电商入场第一步!先收集整理这些数据,看清自己该如何入场!【纯分享】

23年、24年确实无愧于“品牌出海元年”的称号&#xff0c;23年出海四小龙——速卖通、TikTokshop、Temu、Shein在海外的爆发让大家看到了海外市场的活动&#xff1b;而24年则有更多的国内品牌将目光瞄向了海外市场&#xff0c;年后开工到今天基本上每天都有客户来咨询出海相关的…

Python制作动态颜色变换:颜色渐变动效

文章目录 引言准备工作前置条件 代码实现与解析导入必要的库初始化Pygame颜色变换函数主循环 完整代码 引言 颜色渐变动画是一种视觉上非常吸引人的效果&#xff0c;常用于网页设计和图形应用中。在这篇博客中&#xff0c;我们将使用Python创建一个动态颜色变换的动画效果。通…

PMP–知识卡片--马斯洛需求理论

记忆 马&#xff08;马斯洛&#xff09;背着很多东西&#xff0c;很累&#xff08;生理需要&#xff09;需要找个地方休息&#xff0c;而且需要安全&#xff08;安全需要&#xff09;的地方&#xff0c;就要找朋友&#xff08;社交需要&#xff09;帮忙&#xff0c;但是由于自尊…

【IT领域新生必看】深入浅出Java:揭秘`Comparator`与`Comparable`的神奇区别

文章目录 引言什么是Comparable接口&#xff1f;Comparable接口的定义实现Comparable接口示例&#xff1a; 什么是Comparator接口&#xff1f;Comparator接口的定义实现Comparator接口示例&#xff1a; Comparable与Comparator的区别排序逻辑位置示例&#xff1a; 可扩展性示例…

【IT领域新生必看】深入浅出Java:值传递与引用传递的神奇区别

文章目录 引言什么是值传递&#xff1f;定义和使用值传递示例&#xff1a; 什么是引用传递&#xff1f;定义和使用引用传递示例&#xff1a; 值传递与引用传递的区别参数类型示例&#xff1a; 参数传递方式示例&#xff1a; 修改效果示例&#xff1a; 内存管理示例&#xff1a;…